Data Science For Dummies

Author: Lillian Pierson
Publisher: John Wiley & Sons
ISBN: 1119327636
Size: 50.61 MB
Format: PDF, ePub
View: 5088
Download
Discover how data science can help you gain in-depth insight into your business - the easy way! Jobs in data science abound, but few people have the data science skills needed to fill these increasingly important roles. Data Science For Dummies is the perfect starting point for IT professionals and students who want a quick primer on all areas of the expansive data science space. With a focus on business cases, the book explores topics in big data, data science, and data engineering, and how these three areas are combined to produce tremendous value. If you want to pick-up the skills you need to begin a new career or initiate a new project, reading this book will help you understand what technologies, programming languages, and mathematical methods on which to focus. While this book serves as a wildly fantastic guide through the broad, sometimes intimidating field of big data and data science, it is not an instruction manual for hands-on implementation. Here's what to expect: Provides a background in big data and data engineering before moving on to data science and how it's applied to generate value Includes coverage of big data frameworks like Hadoop, MapReduce, Spark, MPP platforms, and NoSQL Explains machine learning and many of its algorithms as well as artificial intelligence and the evolution of the Internet of Things Details data visualization techniques that can be used to showcase, summarize, and communicate the data insights you generate It's a big, big data world out there--let Data Science For Dummies help you harness its power and gain a competitive edge for your organization.

Python For Data Science For Dummies

Author: John Paul Mueller
Publisher: John Wiley & Sons
ISBN: 1119547628
Size: 62.45 MB
Format: PDF, Kindle
View: 5894
Download
The fast and easy way to learn Python programming and statistics Python is a general-purpose programming language created in the late 1980s—and named after Monty Python—that's used by thousands of people to do things from testing microchips at Intel, to powering Instagram, to building video games with the PyGame library. Python For Data Science For Dummies is written for people who are new to data analysis, and discusses the basics of Python data analysis programming and statistics. The book also discusses Google Colab, which makes it possible to write Python code in the cloud. Get started with data science and Python Visualize information Wrangle data Learn from data The book provides the statistical background needed to get started in data science programming, including probability, random distributions, hypothesis testing, confidence intervals, and building regression models for prediction.

Data Science Strategy For Dummies

Author: Ulrika Jägare
Publisher: John Wiley & Sons
ISBN: 1119566258
Size: 70.78 MB
Format: PDF, Mobi
View: 4566
Download
All the answers to your data science questions Over half of all businesses are using data science to generate insights and value from big data. How are they doing it? Data Science Strategy For Dummies answers all your questions about how to build a data science capability from scratch, starting with the “what” and the “why” of data science and covering what it takes to lead and nurture a top-notch team of data scientists. With this book, you’ll learn how to incorporate data science as a strategic function into any business, large or small. Find solutions to your real-life challenges as you uncover the stories and value hidden within data. Learn exactly what data science is and why it’s important Adopt a data-driven mindset as the foundation to success Understand the processes and common roadblocks behind data science Keep your data science program focused on generating business value Nurture a top-quality data science team In non-technical language, Data Science Strategy For Dummies outlines new perspectives and strategies to effectively lead analytics and data science functions to create real value.

Machine Learning For Dummies

Author: John Paul Mueller
Publisher: John Wiley & Sons
ISBN: 1119245516
Size: 49.57 MB
Format: PDF, ePub, Mobi
View: 2814
Download
Your no-nonsense guide to making sense of machine learning Machine learning can be a mind-boggling concept for the masses, but those who are in the trenches of computer programming know just how invaluable it is. Without machine learning, fraud detection, web search results, real-time ads on web pages, credit scoring, automation, and email spam filtering wouldn't be possible, and this is only showcasing just a few of its capabilities. Written by two data science experts, Machine Learning For Dummies offers a much-needed entry point for anyone looking to use machine learning to accomplish practical tasks. Covering the entry-level topics needed to get you familiar with the basic concepts of machine learning, this guide quickly helps you make sense of the programming languages and tools you need to turn machine learning-based tasks into a reality. Whether you're maddened by the math behind machine learning, apprehensive about AI, perplexed by preprocessing data—or anything in between—this guide makes it easier to understand and implement machine learning seamlessly. Grasp how day-to-day activities are powered by machine learning Learn to 'speak' certain languages, such as Python and R, to teach machines to perform pattern-oriented tasks and data analysis Learn to code in R using R Studio Find out how to code in Python using Anaconda Dive into this complete beginner's guide so you are armed with all you need to know about machine learning!

Python All In One For Dummies

Author: John Shovic
Publisher: John Wiley & Sons
ISBN: 1119557593
Size: 41.87 MB
Format: PDF, Mobi
View: 2074
Download
Your one-stop resource on all things Python Thanks to its flexibility, Python has grown to become one of the most popular programming languages in the world. Developers use Python in app development, web development, data science, machine learning, and even in coding education classes. There's almost no type of project that Python can't make better. From creating apps to building complex websites to sorting big data, Python provides a way to get the work done. Python All-in-One For Dummies offers a starting point for those new to coding by explaining the basics of Python and demonstrating how it’s used in a variety of applications. Covers the basics of the language Explains its syntax through application in high-profile industries Shows how Python can be applied to projects in enterprise Delves into major undertakings including artificial intelligence, physical computing, machine learning, robotics and data analysis This book is perfect for anyone new to coding as well as experienced coders interested in adding Python to their toolbox.

Beginning Data Science With Python And Jupyter

Author: Alex Galea
Publisher: Packt Publishing Ltd
ISBN: 1789534658
Size: 31.19 MB
Format: PDF, Mobi
View: 1099
Download
Getting started with data science doesn't have to be an uphill battle. This step-by-step guide is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction. Key Features Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers and Random Forests Discover how you can use web scraping to gather and parse your own bespoke datasets Book Description Get to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll finish up by showing you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context. What you will learn Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers, and Random Forests Plan a machine learning classification strategy and train classification, models Use validation curves and dimensionality reduction to tune and enhance your models Discover how you can use web scraping to gather and parse your own bespoke datasets Scrape tabular data from web pages and transform them into Pandas DataFrames Create interactive, web-friendly visualizations to clearly communicate your findings Who this book is for This book is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start.

Data Science Projects With Python

Author: Stephen Klosterman
Publisher: Packt Publishing Ltd
ISBN: 183855260X
Size: 78.44 MB
Format: PDF, ePub, Docs
View: 4918
Download
Gain hands-on experience with industry-standard data analysis and machine learning tools in Python Key Features Learn techniques to use data to identify the exact problem to be solved Visualize data using different graphs Identify how to select an appropriate algorithm for data extraction Book Description Data Science Projects with Python is designed to give you practical guidance on industry-standard data analysis and machine learning tools in Python, with the help of realistic data. The book will help you understand how you can use pandas and Matplotlib to critically examine a dataset with summary statistics and graphs, and extract the insights you seek to derive. You will continue to build on your knowledge as you learn how to prepare data and feed it to machine learning algorithms, such as regularized logistic regression and random forest, using the scikit-learn package. You’ll discover how to tune the algorithms to provide the best predictions on new and, unseen data. As you delve into later chapters, you’ll be able to understand the working and output of these algorithms and gain insight into not only the predictive capabilities of the models but also their reasons for making these predictions. By the end of this book, you will have the skills you need to confidently use various machine learning algorithms to perform detailed data analysis and extract meaningful insights from unstructured data. What you will learn Install the required packages to set up a data science coding environment Load data into a Jupyter Notebook running Python Use Matplotlib to create data visualizations Fit a model using scikit-learn Use lasso and ridge regression to reduce overfitting Fit and tune a random forest model and compare performance with logistic regression Create visuals using the output of the Jupyter Notebook Who this book is for If you are a data analyst, data scientist, or a business analyst who wants to get started with using Python and machine learning techniques to analyze data and predict outcomes, this book is for you. Basic knowledge of computer programming and data analytics is a must. Familiarity with mathematical concepts such as algebra and basic statistics will be useful.

The Data Science Handbook

Author: Field Cady
Publisher: John Wiley & Sons
ISBN: 1119092949
Size: 42.15 MB
Format: PDF, Docs
View: 7756
Download
A comprehensive overview of data science covering the analytics, programming, and business skills necessary to master the discipline Finding a good data scientist has been likened to hunting for a unicorn: the required combination of technical skills is simply very hard to find in one person. In addition, good data science is not just rote application of trainable skill sets; it requires the ability to think flexibly about all these areas and understand the connections between them. This book provides a crash course in data science, combining all the necessary skills into a unified discipline. Unlike many analytics books, computer science and software engineering are given extensive coverage since they play such a central role in the daily work of a data scientist. The author also describes classic machine learning algorithms, from their mathematical foundations to real-world applications. Visualization tools are reviewed, and their central importance in data science is highlighted. Classical statistics is addressed to help readers think critically about the interpretation of data and its common pitfalls. The clear communication of technical results, which is perhaps the most undertrained of data science skills, is given its own chapter, and all topics are explained in the context of solving real-world data problems. The book also features: • Extensive sample code and tutorials using Python™ along with its technical libraries • Core technologies of “Big Data,” including their strengths and limitations and how they can be used to solve real-world problems • Coverage of the practical realities of the tools, keeping theory to a minimum; however, when theory is presented, it is done in an intuitive way to encourage critical thinking and creativity • A wide variety of case studies from industry • Practical advice on the realities of being a data scientist today, including the overall workflow, where time is spent, the types of datasets worked on, and the skill sets needed The Data Science Handbook is an ideal resource for data analysis methodology and big data software tools. The book is appropriate for people who want to practice data science, but lack the required skill sets. This includes software professionals who need to better understand analytics and statisticians who need to understand software. Modern data science is a unified discipline, and it is presented as such. This book is also an appropriate reference for researchers and entry-level graduate students who need to learn real-world analytics and expand their skill set. FIELD CADY is the data scientist at the Allen Institute for Artificial Intelligence, where he develops tools that use machine learning to mine scientific literature. He has also worked at Google and several Big Data startups. He has a BS in physics and math from Stanford University, and an MS in computer science from Carnegie Mellon.

Getting A Big Data Job For Dummies

Author: Jason Williamson
Publisher: John Wiley & Sons
ISBN: 1118903404
Size: 26.57 MB
Format: PDF
View: 3666
Download
Hone your analytic talents and become part of the next big thing Getting a Big Data Job For Dummies is the ultimate guide to landing a position in one of the fastest-growing fields in the modern economy. Learn exactly what "big data" means, why it's so important across all industries, and how you can obtain one of the most sought-after skill sets of the decade. This book walks you through the process of identifying your ideal big data job, shaping the perfect resume, and nailing the interview, all in one easy-to-read guide. Companies from all industries, including finance, technology, medicine, and defense, are harnessing massive amounts of data to reap a competitive advantage. The demand for big data professionals is growing every year, and experts forecast an estimated 1.9 million additional U.S. jobs in big data by 2015. Whether your niche is developing the technology, handling the data, or analyzing the results, turning your attention to a career in big data can lead to a more secure, more lucrative career path. Getting a Big Data Job For Dummies provides an overview of the big data career arc, and then shows you how to get your foot in the door with topics like: The education you need to succeed The range of big data career path options An overview of major big data employers A plan to develop your job-landing strategy Your analytic inclinations may be your ticket to long-lasting success. In a highly competitive job market, developing your data skills can create a situation where you pick your employer rather than the other way around. If you're ready to get in on the ground floor of the next big thing, Getting a Big Data Job For Dummies will teach you everything you need to know to get started today.

R Projects For Dummies

Author: Joseph Schmuller
Publisher: John Wiley & Sons
ISBN: 1119446171
Size: 36.48 MB
Format: PDF, ePub, Mobi
View: 1683
Download
Make the most of R’s extensive toolset R Projects For Dummies offers a unique learn-by-doing approach. You will increase the depth and breadth of your R skillset by completing a wide variety of projects. By using R’s graphics, interactive, and machine learning tools, you’ll learn to apply R’s extensive capabilities in an array of scenarios. The depth of the project experience is unmatched by any other content online or in print. And you just might increase your statistics knowledge along the way, too! R is a free tool, and it’s the basis of a huge amount of work in data science. It's taking the place of costly statistical software that sometimes takes a long time to learn. One reason is that you can use just a few R commands to create sophisticated analyses. Another is that easy-to-learn R graphics enable you make the results of those analyses available to a wide audience. This book will help you sharpen your skills by applying them in the context of projects with R, including dashboards, image processing, data reduction, mapping, and more. Appropriate for R users at all levels Helps R programmers plan and complete their own projects Focuses on R functions and packages Shows how to carry out complex analyses by just entering a few commands If you’re brand new to R or just want to brush up on your skills, R Projects For Dummies will help you complete your projects with ease.