Hadoop Application Architectures

Author: Mark Grover
Publisher: "O'Reilly Media, Inc."
ISBN: 1491900075
Size: 76.71 MB
Format: PDF, Docs
View: 3232
Download
Get expert guidance on architecting end-to-end data management solutions with Apache Hadoop. While many sources explain how to use various components in the Hadoop ecosystem, this practical book takes you through architectural considerations necessary to tie those components together into a complete tailored application, based on your particular use case. To reinforce those lessons, the book’s second section provides detailed examples of architectures used in some of the most commonly found Hadoop applications. Whether you’re designing a new Hadoop application, or planning to integrate Hadoop into your existing data infrastructure, Hadoop Application Architectures will skillfully guide you through the process. This book covers: Factors to consider when using Hadoop to store and model data Best practices for moving data in and out of the system Data processing frameworks, including MapReduce, Spark, and Hive Common Hadoop processing patterns, such as removing duplicate records and using windowing analytics Giraph, GraphX, and other tools for large graph processing on Hadoop Using workflow orchestration and scheduling tools such as Apache Oozie Near-real-time stream processing with Apache Storm, Apache Spark Streaming, and Apache Flume Architecture examples for clickstream analysis, fraud detection, and data warehousing

Innovations In Big Data Mining And Embedded Knowledge

Author: Anna Esposito
Publisher: Springer
ISBN: 3030159396
Size: 56.23 MB
Format: PDF, Mobi
View: 1110
Download
This book addresses the usefulness of knowledge discovery through data mining. With this aim, contributors from different fields propose concrete problems and applications showing how data mining and discovering embedded knowledge from raw data can be beneficial to social organizations, domestic spheres, and ICT markets. Data mining or knowledge discovery in databases (KDD) has received increasing interest due to its focus on transforming large amounts of data into novel, valid, useful, and structured knowledge by detecting concealed patterns and relationships. The concept of knowledge is broad and speculative and has promoted epistemological debates in western philosophies. The intensified interest in knowledge management and data mining stems from the difficulty in identifying computational models able to approximate human behaviors and abilities in resolving organizational, social, and physical problems. Current ICT interfaces are not yet adequately advanced to support and simulate the abilities of physicians, teachers, assistants or housekeepers in domestic spheres. And unlike in industrial contexts where abilities are routinely applied, the domestic world is continuously changing and unpredictable. There are challenging questions in this field: Can knowledge locked in conventions, rules of conduct, common sense, ethics, emotions, laws, cultures, and experiences be mined from data? Is it acceptable for automatic systems displaying emotional behaviors to govern complex interactions based solely on the mining of large volumes of data? Discussing multidisciplinary themes, the book proposes computational models able to approximate, to a certain degree, human behaviors and abilities in resolving organizational, social, and physical problems. The innovations presented are of primary importance for: a. The academic research community b. The ICT market c. Ph.D. students and early stage researchers d. Schools, hospitals, rehabilitation and assisted-living centers e. Representatives from multimedia industries and standardization bodies

Big Data Computing

Author: Vivek Kale
Publisher: CRC Press
ISBN: 1498715346
Size: 73.14 MB
Format: PDF, ePub, Mobi
View: 2089
Download
This book unravels the mystery of Big Data computing and its power to transform business operations. The approach it uses will be helpful to any professional who must present a case for realizing Big Data computing solutions or to those who could be involved in a Big Data computing project. It provides a framework that enables business and technical managers to make optimal decisions necessary for the successful migration to Big Data computing environments and applications within their organizations.

Architecting Modern Data Platforms

Author: Jan Kunigk
Publisher: O'Reilly Media
ISBN: 1491969245
Size: 72.66 MB
Format: PDF, Kindle
View: 7307
Download
There’s a lot of information about big data technologies, but splicing these technologies into an end-to-end enterprise data platform is a daunting task not widely covered. With this practical book, you’ll learn how to build big data infrastructure both on-premises and in the cloud and successfully architect a modern data platform. Ideal for enterprise architects, IT managers, application architects, and data engineers, this book shows you how to overcome the many challenges that emerge during Hadoop projects. You’ll explore the vast landscape of tools available in the Hadoop and big data realm in a thorough technical primer before diving into: Infrastructure: Look at all component layers in a modern data platform, from the server to the data center, to establish a solid foundation for data in your enterprise Platform: Understand aspects of deployment, operation, security, high availability, and disaster recovery, along with everything you need to know to integrate your platform with the rest of your enterprise IT Taking Hadoop to the cloud: Learn the important architectural aspects of running a big data platform in the cloud while maintaining enterprise security and high availability

Mastering Hadoop 3

Author: Chanchal Singh
Publisher: Packt Publishing Ltd
ISBN: 1788628322
Size: 32.65 MB
Format: PDF, Mobi
View: 5654
Download
A comprehensive guide to mastering the most advanced Hadoop 3 concepts Key Features Get to grips with the newly introduced features and capabilities of Hadoop 3 Crunch and process data using MapReduce, YARN, and a host of tools within the Hadoop ecosystem Sharpen your Hadoop skills with real-world case studies and code Book Description Apache Hadoop is one of the most popular big data solutions for distributed storage and for processing large chunks of data. With Hadoop 3, Apache promises to provide a high-performance, more fault-tolerant, and highly efficient big data processing platform, with a focus on improved scalability and increased efficiency. With this guide, you’ll understand advanced concepts of the Hadoop ecosystem tool. You’ll learn how Hadoop works internally, study advanced concepts of different ecosystem tools, discover solutions to real-world use cases, and understand how to secure your cluster. It will then walk you through HDFS, YARN, MapReduce, and Hadoop 3 concepts. You’ll be able to address common challenges like using Kafka efficiently, designing low latency, reliable message delivery Kafka systems, and handling high data volumes. As you advance, you’ll discover how to address major challenges when building an enterprise-grade messaging system, and how to use different stream processing systems along with Kafka to fulfil your enterprise goals. By the end of this book, you’ll have a complete understanding of how components in the Hadoop ecosystem are effectively integrated to implement a fast and reliable data pipeline, and you’ll be equipped to tackle a range of real-world problems in data pipelines. What you will learn Gain an in-depth understanding of distributed computing using Hadoop 3 Develop enterprise-grade applications using Apache Spark, Flink, and more Build scalable and high-performance Hadoop data pipelines with security, monitoring, and data governance Explore batch data processing patterns and how to model data in Hadoop Master best practices for enterprises using, or planning to use, Hadoop 3 as a data platform Understand security aspects of Hadoop, including authorization and authentication Who this book is for If you want to become a big data professional by mastering the advanced concepts of Hadoop, this book is for you. You’ll also find this book useful if you’re a Hadoop professional looking to strengthen your knowledge of the Hadoop ecosystem. Fundamental knowledge of the Java programming language and basics of Hadoop is necessary to get started with this book.

Professional Hadoop Solutions

Author: Boris Lublinsky
Publisher: John Wiley & Sons
ISBN: 1118824180
Size: 35.67 MB
Format: PDF, ePub, Docs
View: 896
Download
The go-to guidebook for deploying Big Data solutions withHadoop Today's enterprise architects need to understand how the Hadoopframeworks and APIs fit together, and how they can be integrated todeliver real-world solutions. This book is a practical, detailedguide to building and implementing those solutions, with code-levelinstruction in the popular Wrox tradition. It covers storing datawith HDFS and Hbase, processing data with MapReduce, and automatingdata processing with Oozie. Hadoop security, running Hadoop withAmazon Web Services, best practices, and automating Hadoopprocesses in real time are also covered in depth. With in-depth code examples in Java and XML and the latest onrecent additions to the Hadoop ecosystem, this complete resourcealso covers the use of APIs, exposing their inner workings andallowing architects and developers to better leverage and customizethem. The ultimate guide for developers, designers, and architectswho need to build and deploy Hadoop applications Covers storing and processing data with various technologies,automating data processing, Hadoop security, and deliveringreal-time solutions Includes detailed, real-world examples and code-levelguidelines Explains when, why, and how to use these tools effectively Written by a team of Hadoop experts in theprogrammer-to-programmer Wrox style Professional Hadoop Solutions is the reference enterprisearchitects and developers need to maximize the power of Hadoop.

Big Data Analytics With Hadoop 3

Author: Sridhar Alla
Publisher: Packt Publishing Ltd
ISBN: 1788624955
Size: 74.97 MB
Format: PDF
View: 4368
Download
Explore big data concepts, platforms, analytics, and their applications using the power of Hadoop 3 Key Features Learn Hadoop 3 to build effective big data analytics solutions on-premise and on cloud Integrate Hadoop with other big data tools such as R, Python, Apache Spark, and Apache Flink Exploit big data using Hadoop 3 with real-world examples Book Description Apache Hadoop is the most popular platform for big data processing, and can be combined with a host of other big data tools to build powerful analytics solutions. Big Data Analytics with Hadoop 3 shows you how to do just that, by providing insights into the software as well as its benefits with the help of practical examples. Once you have taken a tour of Hadoop 3’s latest features, you will get an overview of HDFS, MapReduce, and YARN, and how they enable faster, more efficient big data processing. You will then move on to learning how to integrate Hadoop with the open source tools, such as Python and R, to analyze and visualize data and perform statistical computing on big data. As you get acquainted with all this, you will explore how to use Hadoop 3 with Apache Spark and Apache Flink for real-time data analytics and stream processing. In addition to this, you will understand how to use Hadoop to build analytics solutions on the cloud and an end-to-end pipeline to perform big data analysis using practical use cases. By the end of this book, you will be well-versed with the analytical capabilities of the Hadoop ecosystem. You will be able to build powerful solutions to perform big data analytics and get insight effortlessly. What you will learn Explore the new features of Hadoop 3 along with HDFS, YARN, and MapReduce Get well-versed with the analytical capabilities of Hadoop ecosystem using practical examples Integrate Hadoop with R and Python for more efficient big data processing Learn to use Hadoop with Apache Spark and Apache Flink for real-time data analytics Set up a Hadoop cluster on AWS cloud Perform big data analytics on AWS using Elastic Map Reduce Who this book is for Big Data Analytics with Hadoop 3 is for you if you are looking to build high-performance analytics solutions for your enterprise or business using Hadoop 3’s powerful features, or you’re new to big data analytics. A basic understanding of the Java programming language is required.

Mysql 8 For Big Data

Author: Shabbir Challawala
Publisher: Packt Publishing Ltd
ISBN: 1788390423
Size: 54.39 MB
Format: PDF, ePub, Docs
View: 6610
Download
Uncover the power of MySQL 8 for Big Data About This Book Combine the powers of MySQL and Hadoop to build a solid Big Data solution for your organization Integrate MySQL with different NoSQL APIs and Big Data tools such as Apache Sqoop A comprehensive guide with practical examples on building a high performance Big Data pipeline with MySQL Who This Book Is For This book is intended for MySQL database administrators and Big Data professionals looking to integrate MySQL 8 and Hadoop to implement a high performance Big Data solution. Some previous experience with MySQL will be helpful, although the book will highlight the newer features introduced in MySQL 8. What You Will Learn Explore the features of MySQL 8 and how they can be leveraged to handle Big Data Unlock the new features of MySQL 8 for managing structured and unstructured Big Data Integrate MySQL 8 and Hadoop for efficient data processing Perform aggregation using MySQL 8 for optimum data utilization Explore different kinds of join and union in MySQL 8 to process Big Data efficiently Accelerate Big Data processing with Memcached Integrate MySQL with the NoSQL API Implement replication to build highly available solutions for Big Data In Detail With organizations handling large amounts of data on a regular basis, MySQL has become a popular solution to handle this structured Big Data. In this book, you will see how DBAs can use MySQL 8 to handle billions of records, and load and retrieve data with performance comparable or superior to commercial DB solutions with higher costs. Many organizations today depend on MySQL for their websites and a Big Data solution for their data archiving, storage, and analysis needs. However, integrating them can be challenging. This book will show you how to implement a successful Big Data strategy with Apache Hadoop and MySQL 8. It will cover real-time use case scenario to explain integration and achieve Big Data solutions using technologies such as Apache Hadoop, Apache Sqoop, and MySQL Applier. Also, the book includes case studies on Apache Sqoop and real-time event processing. By the end of this book, you will know how to efficiently use MySQL 8 to manage data for your Big Data applications. Style and approach Step by Step guide filled with real-world practical examples.

Practical Hadoop Migration

Author: Bhushan Lakhe
Publisher: Apress
ISBN: 1484212878
Size: 52.19 MB
Format: PDF, Kindle
View: 484
Download
Re-architect relational applications to NoSQL, integrate relational database management systems with the Hadoop ecosystem, and transform and migrate relational data to and from Hadoop components. This book covers the best-practice design approaches to re-architecting your relational applications and transforming your relational data to optimize concurrency, security, denormalization, and performance. Winner of IBM’s 2012 Gerstner Award for his implementation of big data and data warehouse initiatives and author of Practical Hadoop Security, author Bhushan Lakhe walks you through the entire transition process. First, he lays out the criteria for deciding what blend of re-architecting, migration, and integration between RDBMS and HDFS best meets your transition objectives. Then he demonstrates how to design your transition model. Lakhe proceeds to cover the selection criteria for ETL tools, the implementation steps for migration with SQOOP- and Flume-based data transfers, and transition optimization techniques for tuning partitions, scheduling aggregations, and redesigning ETL. Finally, he assesses the pros and cons of data lakes and Lambda architecture as integrative solutions and illustrates their implementation with real-world case studies. Hadoop/NoSQL solutions do not offer by default certain relational technology features such as role-based access control, locking for concurrent updates, and various tools for measuring and enhancing performance. Practical Hadoop Migration shows how to use open-source tools to emulate such relational functionalities in Hadoop ecosystem components. What You'll Learn Decide whether you should migrate your relational applications to big data technologies or integrate them Transition your relational applications to Hadoop/NoSQL platforms in terms of logical design and physical implementation Discover RDBMS-to-HDFS integration, data transformation, and optimization techniques Consider when to use Lambda architecture and data lake solutions Select and implement Hadoop-based components and applications to speed transition, optimize integrated performance, and emulate relational functionalities Who This Book Is For Database developers, database administrators, enterprise architects, Hadoop/NoSQL developers, and IT leaders. Its secondary readership is project and program managers and advanced students of database and management information systems.

Big Data In Engineering Applications

Author: Sanjiban Sekhar Roy
Publisher: Springer
ISBN: 9811084769
Size: 49.94 MB
Format: PDF, ePub, Docs
View: 4002
Download
This book presents the current trends, technologies, and challenges in Big Data in the diversified field of engineering and sciences. It covers the applications of Big Data ranging from conventional fields of mechanical engineering, civil engineering to electronics, electrical, and computer science to areas in pharmaceutical and biological sciences. This book consists of contributions from various authors from all sectors of academia and industries, demonstrating the imperative application of Big Data for the decision-making process in sectors where the volume, variety, and velocity of information keep increasing. The book is a useful reference for graduate students, researchers and scientists interested in exploring the potential of Big Data in the application of engineering areas.