How To Solve It

Author: G. Polya
Publisher: Princeton University Press
ISBN: 1400828678
Size: 72.35 MB
Format: PDF, ePub, Mobi
View: 4740
Download
A perennial bestseller by eminent mathematician G. Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be "reasoned" out—from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft—indeed, brilliant—instructions on stripping away irrelevancies and going straight to the heart of the problem.

How To Solve It

Author: George Pólya
Publisher:
ISBN: 9780691164076
Size: 68.27 MB
Format: PDF, ePub, Mobi
View: 7139
Download
"Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be "reasoned" out--from building a bridge to winning a game of anagrams."--Back cover.

Exploring Continued Fractions From The Integers To Solar Eclipses

Author: Andrew J. Simoson
Publisher: American Mathematical Soc.
ISBN: 1470447959
Size: 39.24 MB
Format: PDF, Docs
View: 4068
Download
There is a nineteen-year recurrence in the apparent position of the sun and moon against the background of the stars, a pattern observed long ago by the Babylonians. In the course of those nineteen years the Earth experiences 235 lunar cycles. Suppose we calculate the ratio of Earth's period about the sun to the moon's period about Earth. That ratio has 235/19 as one of its early continued fraction convergents, which explains the apparent periodicity. Exploring Continued Fractions explains this and other recurrent phenomena—astronomical transits and conjunctions, lifecycles of cicadas, eclipses—by way of continued fraction expansions. The deeper purpose is to find patterns, solve puzzles, and discover some appealing number theory. The reader will explore several algorithms for computing continued fractions, including some new to the literature. He or she will also explore the surprisingly large portion of number theory connected to continued fractions: Pythagorean triples, Diophantine equations, the Stern-Brocot tree, and a number of combinatorial sequences. The book features a pleasantly discursive style with excursions into music (The Well-Tempered Clavier), history (the Ishango bone and Plimpton 322), classics (the shape of More's Utopia) and whimsy (dropping a black hole on Earth's surface). Andy Simoson has won both the Chauvenet Prize and Pólya Award for expository writing from the MAA and his Voltaire's Riddle was a Choice magazine Outstanding Academic Title. This book is an enjoyable ramble through some beautiful mathematics. For most of the journey the only necessary prerequisites are a minimal familiarity with mathematical reasoning and a sense of fun.

A Wealth Of Numbers

Author: Benjamin Wardhaugh
Publisher: Princeton University Press
ISBN: 1400841984
Size: 22.75 MB
Format: PDF
View: 2567
Download
Despite what we may sometimes imagine, popular mathematics writing didn't begin with Martin Gardner. In fact, it has a rich tradition stretching back hundreds of years. This entertaining and enlightening anthology--the first of its kind--gathers nearly one hundred fascinating selections from the past 500 years of popular math writing, bringing to life a little-known side of math history. Ranging from the late fifteenth to the late twentieth century, and drawing from books, newspapers, magazines, and websites, A Wealth of Numbers includes recreational, classroom, and work mathematics; mathematical histories and biographies; accounts of higher mathematics; explanations of mathematical instruments; discussions of how math should be taught and learned; reflections on the place of math in the world; and math in fiction and humor. Featuring many tricks, games, problems, and puzzles, as well as much history and trivia, the selections include a sixteenth-century guide to making a horizontal sundial; "Newton for the Ladies" (1739); Leonhard Euler on the idea of velocity (1760); "Mathematical Toys" (1785); a poetic version of the rule of three (1792); "Lotteries and Mountebanks" (1801); Lewis Carroll on the game of logic (1887); "Maps and Mazes" (1892); "Einstein's Real Achievement" (1921); "Riddles in Mathematics" (1945); "New Math for Parents" (1966); and "PC Astronomy" (1997). Organized by thematic chapters, each selection is placed in context by a brief introduction. A unique window into the hidden history of popular mathematics, A Wealth of Numbers will provide many hours of fun and learning to anyone who loves popular mathematics and science. Some images inside the book are unavailable due to digital copyright restrictions.

Teaching Mathematical Modelling Connecting To Research And Practice

Author: Gloria Ann Stillman
Publisher: Springer Science & Business Media
ISBN: 9400765401
Size: 76.71 MB
Format: PDF, ePub, Docs
View: 926
Download
This book provides readers with an overview of recent international research and developments in the teaching and learning of modelling and applications from a variety of theoretical and practical perspectives. There is a strong focus on pedagogical issues for teaching and learning of modelling as well as research into teaching and practice. The teaching of applications of mathematics and mathematical modelling from the early years through primary and secondary school and at tertiary level is rising in prominence in many parts of the world commensurate with an ever-increasing usage of mathematics in business, the environment, industry and everyday life. The authors are all members of the International Community of Teachers of Mathematical Modelling and Applications and important researchers in mathematics education and mathematics. The book will be of interest to teachers, practitioners and researchers in universities, polytechnics, teacher education, curriculum and policy.​

Street Fighting Mathematics

Author: Sanjoy Mahajan
Publisher: MIT Press
ISBN: 0262265591
Size: 51.27 MB
Format: PDF, Docs
View: 1354
Download
In problem solving, as in street fighting, rules are for fools: do whatever works -- don't just stand there! Yet we often fear an unjustified leap even though it may land us on a correct result. Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation.In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge -- from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool -- the general principle -- from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems.Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.

Rigor And Structure

Author: John P. Burgess
Publisher: OUP Oxford
ISBN: 019103360X
Size: 15.59 MB
Format: PDF
View: 3191
Download
While we are commonly told that the distinctive method of mathematics is rigorous proof, and that the special topic of mathematics is abstract structure, there has been no agreement among mathematicians, logicians, or philosophers as to just what either of these assertions means. John P. Burgess clarifies the nature of mathematical rigor and of mathematical structure, and above all of the relation between the two, taking into account some of the latest developments in mathematics, including the rise of experimental mathematics on the one hand and computerized formal proofs on the other hand. The main theses of Rigor and Structure are that the features of mathematical practice that a large group of philosophers of mathematics, the structuralists, have attributed to the peculiar nature of mathematical objects are better explained in a different way, as artefacts of the manner in which the ancient ideal of rigor is realized in modern mathematics. Notably, the mathematician must be very careful in deriving new results from the previous literature, but may remain largely indifferent to just how the results in the previous literature were obtained from first principles. Indeed, the working mathematician may remain largely indifferent to just what the first principles are supposed to be, and whether they are set-theoretic or category-theoretic or something else. Along the way to these conclusions, a great many historical developments in mathematics, philosophy, and logic are surveyed. Yet very little in the way of background knowledge on the part of the reader is presupposed.