Pressure Vessel Design Manual

Author: Dennis R. Moss
Publisher: Butterworth-Heinemann
ISBN: 0123870011
Size: 69.21 MB
Format: PDF, Docs
View: 6812
Download
Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. Covers almost all problems that a working pressure vessel designer can expect to face, with 50+ step-by-step design procedures including a wealth of equations, explanations and data Internationally recognized, widely referenced and trusted, with 20+ years of use in over 30 countries making it an accepted industry standard guide Now revised with up-to-date ASME, ASCE and API regulatory code information, and dual unit coverage for increased ease of international use

Structural Dynamics

Author: Mario Paz
Publisher: Springer
ISBN: 3319947435
Size: 29.27 MB
Format: PDF, ePub, Mobi
View: 6396
Download
The sixth edition of Structural Dynamics: Theory and Computation is the complete and comprehensive text in the field. It presents modern methods of analysis and techniques adaptable to computer programming clearly and easily. The book is ideal as a text for advanced undergraduates or graduate students taking a first course in structural dynamics. It is arranged in such a way that it can be used for a one- or two-semester course, or span the undergraduate and graduate levels. In addition, this text will serve the practicing engineer as a primary reference. The text differs from the standard approach of other presentations in which topics are ordered by their mathematical complexity. This text is organized by the type of structural modeling. The author simplifies the subject by presenting a single degree-of-freedom system in the first chapters, then moves to systems with many degrees-of-freedom in the following chapters. Finally, the text moves to applications of the first chapters and special topics in structural dynamics. This revised textbook intends to provide enhanced learning materials for students to learn structural dynamics, ranging from basics to advanced topics, including their application. When a line-by-line programming language is included with solved problems, students can learn course materials easily and visualize the solved problems using a program. Among several programming languages, MATLAB® has been adopted by many academic institutions across several disciplines. Many educators and students in the U.S. and many international institutions can readily access MATLAB®, which has an appropriate programming language to solve and simulate problems in the textbook. It effectively allows matrix manipulations and plotting of data. Therefore, multi-degree-of freedom problems can be solved in conjunction with the finite element method using MATLAB®. The revised version will include: · solved 34 examples in Chapters 1 through 22 along with MALAB codes. · basics of earthquake design with current design codes (ASCE 7-16 and IBC 2018). · additional figures obtained from MATLAB codes to illustrate time-variant structural behavior and dynamic characteristics (e.g., time versus displacement and spectral chart). This text is essential for civil engineering students. Professional civil engineers will find it an ideal reference.

Design Of Buildings For Wind

Author: Emil Simiu
Publisher: John Wiley & Sons
ISBN: 1118077377
Size: 41.69 MB
Format: PDF, Docs
View: 5934
Download
ASCE 7 is the US standard for identifying minimum design loads for buildings and other structures. ASCE 7 covers many load types, of which wind is one. The purpose of this book is to provide structural and architectural engineers with the practical state-of-the-art knowledge and tools needed for designing and retrofitting buildings for wind loads. The book will also cover wind-induced loss estimation. This new edition include a guide to the thoroughly revised, 2010 version of the ASCE 7 Standard provisions for wind loads; incorporate major advances achieved in recent years in the design of tall buildings for wind; present material on retrofitting and loss estimation; and improve the presentation of the material to increase its usefulness to structural engineers. Key features: New focus on tall buildings helps make the analysis and design guidance easier and less complex. Covers the new simplified design methods of ASCE 7-10, guiding designers to clearly understand the spirit and letter of the provisions and use the design methods with confidence and ease. Includes new coverage of retrofitting for wind load resistance and loss estimation from hurricane winds. Thoroughly revised and updated to conform with current practice and research.

Steel Design

Author: William T. Segui
Publisher: Cengage Learning
ISBN: 1111576009
Size: 54.73 MB
Format: PDF, ePub, Docs
View: 5352
Download
STEEL DESIGN covers the fundamentals of structural steel design with an emphasis on the design of members and their connections, rather than the integrated design of buildings. The book is designed so that instructors can easily teach LRFD, ASD, or both, time-permitting. The application of fundamental principles is encouraged for design procedures as well as for practical design, but a theoretical approach is also provided to enhance student development. While the book is intended for junior-and senior-level engineering students, some of the later chapters can be used in graduate courses and practicing engineers will find this text to be an essential reference tool for reviewing current practices. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Steel Designers Manual

Author: Steel Construction Institute (Great Britain)
Publisher: John Wiley & Sons
ISBN: 1405189401
Size: 77.78 MB
Format: PDF, ePub
View: 7445
Download
"This classic manual on structural steelwork design was first published in 1955, since when it has sold many tens of thousands of copies worldwide. For the seventh edition all chapters have been comprehensively reviewed, revised to ensure they reflect current approaches and best practice, and brought in to compliance with EN 1993: Design of Steel Structures. The Steel Designers' Manual continues to provide, in one volume, the essential knowledge for the design of conventional steelwork. Key Features: Fully revised to comply with the new EUROCODE standards Packed full of tables, analytical design information and worked examples Contributors number leading academics, consulting engineers and fabricators 'A must for anyone involved in steel design' - Journal of Constructional Steel Research"--

Structural Fire Loads Theory And Principles

Author: Leo Razdolsky
Publisher: McGraw Hill Professional
ISBN: 007178974X
Size: 64.99 MB
Format: PDF, Mobi
View: 3074
Download
Tested techniques for designing fire-resistant structures Structural Fire Loads bridges the gap between prescriptive and performance-based methods for the design of fire-resistant buildings. The book streamlines complex computer analyses so that an approximate analytical expression can be easily used in structural fire load analysis and design. Simplified versions of energy, mass, and momentum equations are provided in dimensionless form with their solutions in tabular form. Step-by-step examples using standard structural systems, such as beams, trusses, frames, and arches, are also presented in this practical guide. Using the proven methods in this book, all types of fires can be addressed in the design process. Coverage includes: Overview of current practice Structural fire load and computer models Differential equations and assumptions Simplifications of differential equations Fire load and severity of fires Structural analysis and design