Modern Compressible Flow With Historical Perspective

Author: John David Anderson
Publisher: McGraw-Hill Professional
ISBN: 9780072424430
Size: 68.41 MB
Format: PDF, ePub
View: 2067
1 Compressible Flow - Some History and Introductory Thoughts 2 Integral Forms of the Conservation Equations for Inviscid Flows 3 One-Dimensional Flow 4 Oblique Shock and Expansion Waves 5 Quasi-One-Dimensional Flow 6 Differential Conservation Equations for Inviscid Flows 7 Unsteady Wave Motion 8 General Conservation Equations Revisited: Velocity Potential Equation 9 Linearized Flow 10 Conical Flow 11 Numerical Techniques for Steady Supersonic Flow 12 The Time-Marching Technique: With Application to Supersonic Blunt Bodies and Nozzles 13 Three-Dimensional Flow 14 Transonic Flow 15 Hypersonic Flow 16 Properties of High-Temperature Gases 17 High-Temperature Flows: Basic Examples Appendix A Appendix B An Illustration and Exercise of Computational Fluid Dynamics.

Modern Compressible Flow

Author: John David Anderson
Publisher: McGraw-Hill Science, Engineering & Mathematics
ISBN: 9780070016736
Size: 65.73 MB
Format: PDF, Kindle
View: 795
Modern Compressible Flow, Second Edition, presents the fundamentals of classical compressible flow along with the latest coverage of modern compressible flow dynamics and high-temperature flows. The second edition maintains an engaging writing style and offers philosophical and historical perspectives on the topic. It also continues to offer a variety of problems-providing readers with a practical understanding. The second edition includes the latest developments in the field of modern compressible flow.

Shock Wave Interactions

Author: Konstantinos Kontis
Publisher: Springer
ISBN: 3319731807
Size: 25.57 MB
Format: PDF, Docs
View: 4302
This edited monograph contains the proceedings of the International Shock Interaction Symposium, which emerged as an heir to both the Mach Reflection and Shock Vortex Interaction Symposia. These scientific biannual meetings provide an ideal platform to expose new developments and discuss recent challenges in the field of shock wave interaction phenomena. The goal of the symposia is to offer a forum for international interaction between young and established scientists in the field of shock and blast wave interaction phenomena. The target audience of this book comprises primarily researchers and experts in the field of shock waves, but the book may also be beneficial for young scientists and graduate students alike.

Numerical Approximation Of Hyperbolic Systems Of Conservation Laws

Author: Edwige Godlewski
Publisher: Springer Science & Business Media
ISBN: 1461207134
Size: 79.80 MB
Format: PDF
View: 5319
This work is devoted to the theory and approximation of nonlinear hyper bolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors, and we shall make frequent references to Godlewski and Raviart (1991) (hereafter noted G. R. ), though the present volume can be read independently. This earlier publication, apart from a first chap ter, especially covered the scalar case. Thus, we shall detail here neither the mathematical theory of multidimensional scalar conservation laws nor their approximation in the one-dimensional case by finite-difference con servative schemes, both of which were treated in G. R. , but we shall mostly consider systems. The theory for systems is in fact much more difficult and not at all completed. This explains why we shall mainly concentrate on some theoretical aspects that are needed in the applications, such as the solution of the Riemann problem, with occasional insights into more sophisticated problems. The present book is divided into six chapters, including an introductory chapter. For the reader's convenience, we shall resume in this Introduction the notions that are necessary for a self-sufficient understanding of this book -the main definitions of hyperbolicity, weak solutions, and entropy present the practical examples that will be thoroughly developed in the following chapters, and recall the main results concerning the scalar case.

31st International Symposium On Shock Waves 1

Author: Akihiro Sasoh
Publisher: Springer
ISBN: 3319910205
Size: 13.44 MB
Format: PDF, Docs
View: 657
This is the first volume of a two volume set which presents the results of the 31st International Symposium on Shock Waves (ISSW31), held in Nagoya, Japan in 2017. It was organized with support from the International Shock Wave Institute (ISWI), Shock Wave Research Society of Japan, School of Engineering of Nagoya University, and other societies, organizations, governments and industry. The ISSW31 focused on the following areas: Blast waves, chemical reacting flows, chemical kinetics, detonation and combustion, ignition, facilities, diagnostics, flow visualization, spectroscopy, numerical methods, shock waves in rarefied flows, shock waves in dense gases, shock waves in liquids, shock waves in solids, impact and compaction, supersonic jet, multiphase flow, plasmas, magnetohyrdrodynamics, propulsion, shock waves in internal flows, pseudo-shock wave and shock train, nozzle flow, re-entry gasdynamics, shock waves in space, Richtmyer-Meshkov instability, shock/boundary layer interaction, shock/vortex interaction, shock wave reflection/interaction, shock wave interaction with dusty media, shock wave interaction with granular media, shock wave interaction with porous media, shock wave interaction with obstacles, supersonic and hypersonic flows, sonic boom, shock wave focusing, safety against shock loading, shock waves for material processing, shock-like phenomena, and shock wave education. These proceedings contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 31 and individuals interested in these fields.

History Of Shock Waves Explosions And Impact

Author: Peter O. K. Krehl
Publisher: Springer Science & Business Media
ISBN: 3540304215
Size: 57.20 MB
Format: PDF, Docs
View: 5628
This unique and encyclopedic reference work describes the evolution of the physics of modern shock wave and detonation from the earlier and classical percussion. The history of this complex process is first reviewed in a general survey. Subsequently, the subject is treated in more detail and the book is richly illustrated in the form of a picture gallery. This book is ideal for everyone professionally interested in shock wave phenomena.

Basics Of Aerothermodynamics

Author: Ernst Heinrich Hirschel
Publisher: Springer Science & Business Media
ISBN: 3540265198
Size: 32.69 MB
Format: PDF, ePub, Mobi
View: 4966
The last two decades have brought two important developments for aeroth- modynamics. One is that airbreathing hypersonic flight became the topic of technology programmes and extended system studies. The other is the emergence and maturing of the discrete numerical methods of aerodyn- ics/aerothermodynamics complementary to the ground-simulation facilities, with the parallel enormous growth of computer power. Airbreathing hypersonic flight vehicles are, in contrast to aeroassisted re-entry vehicles, drag sensitive. They have, further, highly integrated lift and propulsion systems. This means that viscous eflFects, like boundary-layer development, laminar-turbulent transition, to a certain degree also strong interaction phenomena, are much more important for such vehicles than for re-entry vehicles. This holds also for the thermal state of the surface and thermal surface effects, concerning viscous and thermo-chemical phenomena (more important for re-entry vehicles) at and near the wall. The discrete numerical methods of aerodynamics/aerothermodynamics permit now - what was twenty years ago not imaginable - the simulation of high speed flows past real flight vehicle configurations with thermo-chemical and viscous effects, the description of the latter being still handicapped by in sufficient flow-physics models. The benefits of numerical simulation for flight vehicle design are enormous: much improved aerodynamic shape definition and optimization, provision of accurate and reliable aerodynamic data, and highly accurate determination of thermal and mechanical loads. Truly mul- disciplinary design and optimization methods regarding the layout of thermal protection systems, all kinds of aero-servoelasticity problems of the airframe, et cetera, begin now to emerge.