Python For Data Science For Dummies

Author: John Paul Mueller
Publisher: John Wiley & Sons
ISBN: 1119547628
Size: 11.50 MB
Format: PDF, ePub, Docs
View: 916
Download
The fast and easy way to learn Python programming and statistics Python is a general-purpose programming language created in the late 1980s—and named after Monty Python—that's used by thousands of people to do things from testing microchips at Intel, to powering Instagram, to building video games with the PyGame library. Python For Data Science For Dummies is written for people who are new to data analysis, and discusses the basics of Python data analysis programming and statistics. The book also discusses Google Colab, which makes it possible to write Python code in the cloud. Get started with data science and Python Visualize information Wrangle data Learn from data The book provides the statistical background needed to get started in data science programming, including probability, random distributions, hypothesis testing, confidence intervals, and building regression models for prediction.

Data Science For Dummies

Author: Lillian Pierson
Publisher: John Wiley & Sons
ISBN: 1119327636
Size: 53.32 MB
Format: PDF, Mobi
View: 5909
Download
Discover how data science can help you gain in-depth insight into your business - the easy way! Jobs in data science abound, but few people have the data science skills needed to fill these increasingly important roles. Data Science For Dummies is the perfect starting point for IT professionals and students who want a quick primer on all areas of the expansive data science space. With a focus on business cases, the book explores topics in big data, data science, and data engineering, and how these three areas are combined to produce tremendous value. If you want to pick-up the skills you need to begin a new career or initiate a new project, reading this book will help you understand what technologies, programming languages, and mathematical methods on which to focus. While this book serves as a wildly fantastic guide through the broad, sometimes intimidating field of big data and data science, it is not an instruction manual for hands-on implementation. Here's what to expect: Provides a background in big data and data engineering before moving on to data science and how it's applied to generate value Includes coverage of big data frameworks like Hadoop, MapReduce, Spark, MPP platforms, and NoSQL Explains machine learning and many of its algorithms as well as artificial intelligence and the evolution of the Internet of Things Details data visualization techniques that can be used to showcase, summarize, and communicate the data insights you generate It's a big, big data world out there--let Data Science For Dummies help you harness its power and gain a competitive edge for your organization.

Hands On Data Science For Marketing

Author: Yoon Hyup Hwang
Publisher: Packt Publishing Ltd
ISBN: 178934882X
Size: 27.68 MB
Format: PDF, Kindle
View: 5121
Download
Optimize your marketing strategies through analytics and machine learning Key Features Understand how data science drives successful marketing campaigns Use machine learning for better customer engagement, retention, and product recommendations Extract insights from your data to optimize marketing strategies and increase profitability Book Description Regardless of company size, the adoption of data science and machine learning for marketing has been rising in the industry. With this book, you will learn to implement data science techniques to understand the drivers behind the successes and failures of marketing campaigns. This book is a comprehensive guide to help you understand and predict customer behaviors and create more effectively targeted and personalized marketing strategies. This is a practical guide to performing simple-to-advanced tasks, to extract hidden insights from the data and use them to make smart business decisions. You will understand what drives sales and increases customer engagements for your products. You will learn to implement machine learning to forecast which customers are more likely to engage with the products and have high lifetime value. This book will also show you how to use machine learning techniques to understand different customer segments and recommend the right products for each customer. Apart from learning to gain insights into consumer behavior using exploratory analysis, you will also learn the concept of A/B testing and implement it using Python and R. By the end of this book, you will be experienced enough with various data science and machine learning techniques to run and manage successful marketing campaigns for your business. What you will learn Learn how to compute and visualize marketing KPIs in Python and R Master what drives successful marketing campaigns with data science Use machine learning to predict customer engagement and lifetime value Make product recommendations that customers are most likely to buy Learn how to use A/B testing for better marketing decision making Implement machine learning to understand different customer segments Who this book is for If you are a marketing professional, data scientist, engineer, or a student keen to learn how to apply data science to marketing, this book is what you need! It will be beneficial to have some basic knowledge of either Python or R to work through the examples. This book will also be beneficial for beginners as it covers basic-to-advanced data science concepts and applications in marketing with real-life examples.

Python All In One For Dummies

Author: John Shovic
Publisher: John Wiley & Sons
ISBN: 1119557593
Size: 67.80 MB
Format: PDF, ePub, Docs
View: 5370
Download
Your one-stop resource on all things Python Thanks to its flexibility, Python has grown to become one of the most popular programming languages in the world. Developers use Python in app development, web development, data science, machine learning, and even in coding education classes. There's almost no type of project that Python can't make better. From creating apps to building complex websites to sorting big data, Python provides a way to get the work done. Python All-in-One For Dummies offers a starting point for those new to coding by explaining the basics of Python and demonstrating how it’s used in a variety of applications. Covers the basics of the language Explains its syntax through application in high-profile industries Shows how Python can be applied to projects in enterprise Delves into major undertakings including artificial intelligence, physical computing, machine learning, robotics and data analysis This book is perfect for anyone new to coding as well as experienced coders interested in adding Python to their toolbox.

Python Data Science Cookbook

Author: Gopi Subramanian
Publisher: Packt Publishing Ltd
ISBN: 1784393665
Size: 40.94 MB
Format: PDF, Docs
View: 4598
Download
Over 60 practical recipes to help you explore Python and its robust data science capabilities About This Book The book is packed with simple and concise Python code examples to effectively demonstrate advanced concepts in action Explore concepts such as programming, data mining, data analysis, data visualization, and machine learning using Python Get up to speed on machine learning algorithms with the help of easy-to-follow, insightful recipes Who This Book Is For This book is intended for all levels of Data Science professionals, both students and practitioners, starting from novice to experts. Novices can spend their time in the first five chapters getting themselves acquainted with Data Science. Experts can refer to the chapters starting from 6 to understand how advanced techniques are implemented using Python. People from non-Python backgrounds can also effectively use this book, but it would be helpful if you have some prior basic programming experience. What You Will Learn Explore the complete range of Data Science algorithms Get to know the tricks used by industry engineers to create the most accurate data science models Manage and use Python libraries such as numpy, scipy, scikit learn, and matplotlib effectively Create meaningful features to solve real-world problems Take a look at Advanced Regression methods for model building and variable selection Get a thorough understanding of the underlying concepts and implementation of Ensemble methods Solve real-world problems using a variety of different datasets from numerical and text data modalities Get accustomed to modern state-of-the art algorithms such as Gradient Boosting, Random Forest, Rotation Forest, and so on In Detail Python is increasingly becoming the language for data science. It is overtaking R in terms of adoption, it is widely known by many developers, and has a strong set of libraries such as Numpy, Pandas, scikit-learn, Matplotlib, Ipython and Scipy, to support its usage in this field. Data Science is the emerging new hot tech field, which is an amalgamation of different disciplines including statistics, machine learning, and computer science. It's a disruptive technology changing the face of today's business and altering the economy of various verticals including retail, manufacturing, online ventures, and hospitality, to name a few, in a big way. This book will walk you through the various steps, starting from simple to the most complex algorithms available in the Data Science arsenal, to effectively mine data and derive intelligence from it. At every step, we provide simple and efficient Python recipes that will not only show you how to implement these algorithms, but also clarify the underlying concept thoroughly. The book begins by introducing you to using Python for Data Science, followed by working with Python environments. You will then learn how to analyse your data with Python. The book then teaches you the concepts of data mining followed by an extensive coverage of machine learning methods. It introduces you to a number of Python libraries available to help implement machine learning and data mining routines effectively. It also covers the principles of shrinkage, ensemble methods, random forest, rotation forest, and extreme trees, which are a must-have for any successful Data Science Professional. Style and approach This is a step-by-step recipe-based approach to Data Science algorithms, introducing the math philosophy behind these algorithms.

Data Science With Python

Author: Rohan Chopra
Publisher: Packt Publishing Ltd
ISBN: 1838552162
Size: 34.93 MB
Format: PDF, Docs
View: 7746
Download
Leverage the power of the Python data science libraries and advanced machine learning techniques to analyse large unstructured datasets and predict the occurrence of a particular future event. Key Features Explore the depths of data science, from data collection through to visualization Learn pandas, scikit-learn, and Matplotlib in detail Study various data science algorithms using real-world datasets Book Description Data Science with Python begins by introducing you to data science and teaches you to install the packages you need to create a data science coding environment. You will learn three major techniques in machine learning: unsupervised learning, supervised learning, and reinforcement learning. You will also explore basic classification and regression techniques, such as support vector machines, decision trees, and logistic regression. As you make your way through chapters, you will study the basic functions, data structures, and syntax of the Python language that are used to handle large datasets with ease. You will learn about NumPy and pandas libraries for matrix calculations and data manipulation, study how to use Matplotlib to create highly customizable visualizations, and apply the boosting algorithm XGBoost to make predictions. In the concluding chapters, you will explore convolutional neural networks (CNNs), deep learning algorithms used to predict what is in an image. You will also understand how to feed human sentences to a neural network, make the model process contextual information, and create human language processing systems to predict the outcome. By the end of this book, you will be able to understand and implement any new data science algorithm and have the confidence to experiment with tools or libraries other than those covered in the book. What you will learn Pre-process data to make it ready to use for machine learning Create data visualizations with Matplotlib Use scikit-learn to perform dimension reduction using principal component analysis (PCA) Solve classification and regression problems Get predictions using the XGBoost library Process images and create machine learning models to decode them Process human language for prediction and classification Use TensorBoard to monitor training metrics in real time Find the best hyperparameters for your model with AutoML Who this book is for Data Science with Python is designed for data analysts, data scientists, database engineers, and business analysts who want to move towards using Python and machine learning techniques to analyze data and predict outcomes. Basic knowledge of Python and data analytics will prove beneficial to understand the various concepts explained through this book.

Mastering Python For Data Science

Author: Samir Madhavan
Publisher: Packt Publishing Ltd
ISBN: 1784392626
Size: 64.47 MB
Format: PDF, Docs
View: 2283
Download
Explore the world of data science through Python and learn how to make sense of data About This Book Master data science methods using Python and its libraries Create data visualizations and mine for patterns Advanced techniques for the four fundamentals of Data Science with Python - data mining, data analysis, data visualization, and machine learning Who This Book Is For If you are a Python developer who wants to master the world of data science then this book is for you. Some knowledge of data science is assumed. What You Will Learn Manage data and perform linear algebra in Python Derive inferences from the analysis by performing inferential statistics Solve data science problems in Python Create high-end visualizations using Python Evaluate and apply the linear regression technique to estimate the relationships among variables. Build recommendation engines with the various collaborative filtering algorithms Apply the ensemble methods to improve your predictions Work with big data technologies to handle data at scale In Detail Data science is a relatively new knowledge domain which is used by various organizations to make data driven decisions. Data scientists have to wear various hats to work with data and to derive value from it. The Python programming language, beyond having conquered the scientific community in the last decade, is now an indispensable tool for the data science practitioner and a must-know tool for every aspiring data scientist. Using Python will offer you a fast, reliable, cross-platform, and mature environment for data analysis, machine learning, and algorithmic problem solving. This comprehensive guide helps you move beyond the hype and transcend the theory by providing you with a hands-on, advanced study of data science. Beginning with the essentials of Python in data science, you will learn to manage data and perform linear algebra in Python. You will move on to deriving inferences from the analysis by performing inferential statistics, and mining data to reveal hidden patterns and trends. You will use the matplot library to create high-end visualizations in Python and uncover the fundamentals of machine learning. Next, you will apply the linear regression technique and also learn to apply the logistic regression technique to your applications, before creating recommendation engines with various collaborative filtering algorithms and improving your predictions by applying the ensemble methods. Finally, you will perform K-means clustering, along with an analysis of unstructured data with different text mining techniques and leveraging the power of Python in big data analytics. Style and approach This book is an easy-to-follow, comprehensive guide on data science using Python. The topics covered in the book can all be used in real world scenarios.

Data Science With Jupyter

Author: Prateek Gupta
Publisher: BPB Publications
ISBN: 9388511379
Size: 16.40 MB
Format: PDF, ePub, Docs
View: 2581
Download
Step-by-step guide to practising data science techniques with Jupyter notebooks Description Modern businesses are awash with data, making data driven decision-making tasks increasingly complex. As a result, relevant technical expertise and analytical skills are required to do such tasks. This book aims to equip you with just enough knowledge of Python in conjunction with skills to use powerful tool such as Jupyter Notebook in order to succeed in the role of a data scientist. The book starts with a brief introduction to the world of data science and the opportunities you may come across along with an overview of the key topics covered in the book. You will learn how to setup Anaconda installation which comes with Jupyter and preinstalled Python packages. Before diving in to several supervised, unsupervised and other machine learning techniques, you’ll learn how to use basic data structures, functions, libraries and packages required to import, clean, visualize and process data. Several machine learning techniques such as regression, classification, clustering, time-series etc have been explained with the use of practical examples and by comparing the performance of various models. By the end of the book, you will come across few case studies to put your knowledge to practice and solve real-life business problems such as building a movie recommendation engine, classifying spam messages, predicting the ability of a borrower to repay loan on time and time series forecasting of housing prices. Remember to practice additional examples provided in the code bundle of the book to master these techniques. Audience The book is intended for anyone looking for a career in data science, all aspiring data scientists who want to learn the most powerful programming language in Machine Learning or working professionals who want to switch their career in Data Science. While no prior knowledge of Data Science or related technologies is assumed, it will be helpful to have some programming experience. Key Features · Acquire Python skills to do independent data science projects · Learn the basics of linear algebra and statistical science in Python way · Understand how and when they're used in data science · Build predictive models, tune their parameters and analyze performance in few steps · Cluster, transform, visualize, and extract insights from unlabelled datasets · Learn how to use matplotlib and seaborn for data visualization · Implement and save machine learning models for real-world business scenarios Table of Contents 1 ) Data Science Fundamentals 2 ) Installing Software and Setting up 3 ) Lists and Dictionaries 4 ) Function and Packages 5 ) NumPy Foundation 6 ) Pandas and Dataframe 7 ) Interacting with Databases 8 ) Thinking Statistically in Data Science 9 ) How to import data in Python? 10 ) Cleaning of imported data 11 ) Data Visualization 12 ) Data Pre-processing 13 ) Supervised Machine Learning 14 ) Unsupervised Machine Learning 15 ) Handling Time-Series Data 16 ) Time-Series Methods 17 ) Case Study – 1 18 ) Case Study – 2 19 ) Case Study – 3 20 ) Case Study – 4

Data Analysis And Visualization Using Python

Author: Dr. Ossama Embarak
Publisher: Apress
ISBN: 1484241096
Size: 24.93 MB
Format: PDF, Mobi
View: 5881
Download
Look at Python from a data science point of view and learn proven techniques for data visualization as used in making critical business decisions. Starting with an introduction to data science with Python, you will take a closer look at the Python environment and get acquainted with editors such as Jupyter Notebook and Spyder. After going through a primer on Python programming, you will grasp fundamental Python programming techniques used in data science. Moving on to data visualization, you will see how it caters to modern business needs and forms a key factor in decision-making. You will also take a look at some popular data visualization libraries in Python. Shifting focus to data structures, you will learn the various aspects of data structures from a data science perspective. You will then work with file I/O and regular expressions in Python, followed by gathering and cleaning data. Moving on to exploring and analyzing data, you will look at advanced data structures in Python. Then, you will take a deep dive into data visualization techniques, going through a number of plotting systems in Python. In conclusion, you will complete a detailed case study, where you’ll get a chance to revisit the concepts you’ve covered so far. What You Will Learn Use Python programming techniques for data science Master data collections in Python Create engaging visualizations for BI systems Deploy effective strategies for gathering and cleaning data Integrate the Seaborn and Matplotlib plotting systems Who This Book Is For Developers with basic Python programming knowledge looking to adopt key strategies for data analysis and visualizations using Python.

Hands On Data Science And Python Machine Learning

Author: Frank Kane
Publisher: Packt Publishing Ltd
ISBN: 1787280225
Size: 57.90 MB
Format: PDF, Mobi
View: 3376
Download
This book covers the fundamentals of machine learning with Python in a concise and dynamic manner. It covers data mining and large-scale machine learning using Apache Spark. About This Book Take your first steps in the world of data science by understanding the tools and techniques of data analysis Train efficient Machine Learning models in Python using the supervised and unsupervised learning methods Learn how to use Apache Spark for processing Big Data efficiently Who This Book Is For If you are a budding data scientist or a data analyst who wants to analyze and gain actionable insights from data using Python, this book is for you. Programmers with some experience in Python who want to enter the lucrative world of Data Science will also find this book to be very useful, but you don't need to be an expert Python coder or mathematician to get the most from this book. What You Will Learn Learn how to clean your data and ready it for analysis Implement the popular clustering and regression methods in Python Train efficient machine learning models using decision trees and random forests Visualize the results of your analysis using Python's Matplotlib library Use Apache Spark's MLlib package to perform machine learning on large datasets In Detail Join Frank Kane, who worked on Amazon and IMDb's machine learning algorithms, as he guides you on your first steps into the world of data science. Hands-On Data Science and Python Machine Learning gives you the tools that you need to understand and explore the core topics in the field, and the confidence and practice to build and analyze your own machine learning models. With the help of interesting and easy-to-follow practical examples, Frank Kane explains potentially complex topics such as Bayesian methods and K-means clustering in a way that anybody can understand them. Based on Frank's successful data science course, Hands-On Data Science and Python Machine Learning empowers you to conduct data analysis and perform efficient machine learning using Python. Let Frank help you unearth the value in your data using the various data mining and data analysis techniques available in Python, and to develop efficient predictive models to predict future results. You will also learn how to perform large-scale machine learning on Big Data using Apache Spark. The book covers preparing your data for analysis, training machine learning models, and visualizing the final data analysis. Style and approach This comprehensive book is a perfect blend of theory and hands-on code examples in Python which can be used for your reference at any time.